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Key concepts

• General Bayesian mixture model
• We derive the Gibbs sampler
• Marginalize out mixing proportions: collapsed Gibbs sampler
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Bayesian mixture model

A mixture model has observations y, parameters β, and latent variables z.

There are N observations, yn,n = 1, . . .N. The mixture model has K
components, so the parameters are βk,k = 1, . . .K with prior p(β) and the
discrete latent variables zn,n = 1, . . .N take on values 1, . . .K.

The Bayesian mixture of categoricals is an example (although in this case, the
observations are the D documents).

wnd

n = 1...Nd

βk

d = 1...D

zdθ

k = 1...K

α !
θ ∼ Dir(α)

βk ∼ Dir(γ)

zd|θ ∼ Cat(θ)

wnd|zd,β ∼ Cat(βzd
)
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Bayesian mixture model

The conditional likelihood is for each observation is

p(yn|zn = k,β) = p(yn|βk) = p(yn|βzn
),

and the prior
p(βk).

The categorical latent component assignment probability

p(zn = k|θ) = θk,

with a Dirichlet prior
p(θ|α) = Dir(α).

Therefore, the latent posterior is

p(zn = k|yn,θ,β) ∝ p(zn = k|θ)p(yn|zn = k,β) ∝ θkp(yn|βzn
),

which is just a discrete distribution with K possible outcomes.
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Gibbs Sampling

Iteratively, alternately, sample the three types of variables:

Component parameters

p(βk|y, z) ∝ p(βk)
∏

n:zn=k

p(yn|βk),

which is now just a regular model, the mixture aspect having been eliminated.

The latent allocations

p(zn = k|yn,θ,β) ∝ θkp(yn|βzn
),

and mixing proportions

p(θ|z,α) = p(θ|α)p(z|θ) = Dir(
ck + αk∑K
j=1 cj + αj

).

where ck =
∑

n:zn=k 1 are the counts for mixture k.
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Collapsed Gibbs Sampler

The parameters are treated in the same way as before.

If we marginalize over θ

p(zn = k|z−n,α) =
α+ c−n,k∑K
j=1 α+ c−n,j

,

where index −n means all except n, and ck are counts;
we derived this result when discussing pseudo counts.

The collapsed Gibbs sampler for the latent assignements

p(zn = k|yn, z−n,β,α) ∝ p(yn|βk)
α+ c−n,k∑K
j=1 α+ c−n,j

,

where now all the zn variables have become dependent (previously they were
conditionally independent given θ).

Notice, that the Gibbs sampler exhibits the rich get richer property.
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